1. How many gallons of water are in an 8-inch diameter pipe that is 550 feet long?
a. 26 gallons
b. 27,632 gallons
c. 1,435 gallons
d. 192 gallons

	I 8 inches	Volume of Cylinder $=.785 \times(D)^{2} X$ (Length)
		$D=8$ inches $X(1 \mathrm{ft} / 12 \mathrm{in})=.667 \mathrm{ft}$
		$L=550 \mathrm{ft}$
-		$V=.785 \times(.667 \mathrm{ft})^{2} \times 550 \mathrm{ft}=$
\longrightarrow		$=.785 \times .445 f^{2} \times 550 \mathrm{ft}$
		$=191.89 \mathrm{ft}{ }^{3} \mathrm{X}\left(7.48 \mathrm{gal} / \mathrm{ft}^{3}\right)$
550 feet		$=1,435 \mathrm{gal}$

2. How many gallons of water are in each 18 -foot section of 16 -inch diameter ductile iron pipe?
a. 25 gallons
b. 179 gallons
c. 188 gallons
d. 3,617 gallons

Volume of Cylinder = $785 \times(D)^{2} X$ (Length)
$D=16$ inches $X(1 \mathrm{ft} / 12 \mathrm{in})=1.33 \mathrm{ft}$
$L=18 \mathrm{ft}$
$V=.785 \times(1.33 f t)^{2} \times 18 f t=$
$=.785 \times 1.77 \mathrm{ft}^{2} \times 18 \mathrm{ft}$
$=25.12 \mathrm{ft}^{3} \mathrm{X}\left(7.48 \mathrm{gal} / f t^{3}\right)$
$=188 \mathrm{gal}$
3. How many cubic feet of water are in a 25 -foot diameter storage tank that has 17.5 feet of water in it?
a. $8,586 \mathrm{ft}^{3}$
b. $343 \mathrm{ft}^{3}$
c. $64,223 \mathrm{ft}^{3}$
d. $6010 \mathrm{ft}^{3}$

Volume of Cylinder $=.785 \mathbf{X}(\mathbf{D})^{2} \boldsymbol{X}$ (Height)*
$D=25 \mathrm{feet}$
$H=17.5 \mathrm{ft}$
$V=.785 \times(25 \mathrm{ft})^{2} \times 17.5 \mathrm{ft}=$
$=.785 \times 625 \mathrm{ft}^{2} \times 17.5 \mathrm{ft}$
$=8,586 \mathrm{ft}^{3}$
*Note: When using the equation for the volume of a cylinder, the 'Height' is the same as 'Length'. A tank can be viewed as a cylinder that, instead of laying on its side like a piece of pipe, is standing upright.
4. How many million gallons (MG) of water are in the storage tank in the problem above?
a. . 0642 MG
b. . 0085 MG
c. $64,223 \mathrm{MG}$
d. $1,148 \mathrm{MG}$

The volume calculated in problem \#3 $=8,586 \mathrm{ft}^{3}$

```
8,586 ft }\mp@subsup{}{}{3}\textrm{X}(7.48 gal/ft 3 )
= 64,223 gallons X (1 MG/1,000,000 gal)
=.0642 MG
```

5. How many gallons per inch are there in a sodium hypochlorite solution tank that measures 30 inches in diameter and has 48 inches of liquid in it when full?
a. 3 gallons/inch
b. 37 gallons/inch
c. 5 gallons/inch
d. 147 gallons/inch

```
Solution - Method \#1
Volume of Cylinder = . 785 X (D) \()^{2} X\) (Height)*
\(D=30\) inches \(X(1 \mathrm{ft} / 12 \mathrm{in})=2.5 \mathrm{ft}\)
\(H=48\) inches \(X(1 \mathrm{ft} / 12 \mathrm{in})=4 \mathrm{ft}\)
\(V=.785 \times(2.5 f t)^{2} \times 4 f t=\)
\(=.785 \times 6.25 \mathrm{ft}^{2} \times 4 \mathrm{ft}\)
\(=19.625 \mathrm{ft}^{3} \mathrm{X}\left(7.48 \mathrm{gal} / \mathrm{ft}^{3}\right)\)
\(=146.8\) gallons \(/ 48\) inches
= 3 gallons/inch
```

*Note: When using the equation for the volume of a cylinder, the 'Height' is the same as 'Length'. A tank can be viewed as a cylinder that, instead of laying on its side like a piece of pipe, is standing upright.

```
Solution - Method #2
Volume of Cylinder =.785 X (D)}\mp@subsup{}{}{2}X\mathrm{ (Height)
D=30 inches X (1 ft/12in) = 2.5 ft
H=1 inch X (1 ft/12in) =.08333 ft
V=.785 X (2.5ft)}\mp@subsup{}{}{2}\times.08333\textrm{ft}
=.785 X 6.25ft }\mp@subsup{}{}{2}\times.08333 f
=.4088 ft 3}X(7.48gal/ft 3)
=3 gallons/inch
```

